
 

 
Tajreen Ahmed (ttahmed), Aniela Macek (amacek), Lillian Meng (lmeng) 

COS 426 Final Project 

Goal 

The goal of our project was to create a miniature puzzle adventure in the style of the 

Professor Layton​ video game series. We wanted to include puzzles that incorporated 

the various graphics techniques we explored this semester. To achieve this goal, we 

decided to implement two games in particular: a gravity maze and a pitcher pour 

game. 

Related Works 

The major work we used as a reference when creating these puzzles was the 

Professor Layton​ video game series. We decided that the puzzles used in these games 

would be better than any puzzles we could come up with ourselves, and chose to 

implement these puzzles in our own style. 

Methodology 

Each of the two puzzle-types involved separate implementation strategies, threaded 

together with a dedicated landing page and navigation between puzzles. 

Initial Technical Decisions 

To begin with, we needed to decide whether we wanted a 2D or 3D implementation. 

While we were inspired by ​Professor Layton​, we wanted our own creation of ​Enigma 

to use a more modern interface and graphical style. We ultimately decided on a 2.5D 

style, where we are restricted to a flat view from a stationary camera but can still 

work with 3D objects. 

With this settled, our implementation naturally lent itself to using Three.js. The 

remainder of our project is implemented with Javascript, HTML/CSS and is hosted on 

Heroku for easy deployment at enigma-puzzles.herokuapp.com. 



Gravity Maze 

 

Description 

The goal of the gravity maze is to rotate a maze so that three color coded blocks 

end up in their corresponding goal positions. The box can be put into 4 different 

rotations, and whenever the orientation changes gravity will pull all the blocks 

down until they collide with either a wall from the maze or another block. 

Implementation 

To create the gravity maze, we needed to incorporate gravity, collisions, and 

animation to display the blocks moving between positions and the rotation of the 

maze. The walls blocks, and goal positions were rendered with cube objects, 

whose positions were determined by the positions of the objects within the 

puzzle. The positions of these walls and blocks were stored separately in 7x7 

arrays, so that locations could be precisely tracked, and then converted to 

approximate locations in the scene for rendering. 

One of the important parts of the puzzle that needed to be incorporated was the 

rotation of the maze itself. In the ​Professor Layton ​version of the puzzle, the 

entire maze would rotate whenever the orientation changed, so that when gravity 

affected the blocks, they would always move down. One possible way we 

considered implementing this functionality was by rotating the entire puzzle and 

all of the objects within it. However, this would make position conversions more 

difficult as we tried to track the locations of the blocks and the walls they might 

collide with. Instead, we decided to rotate the camera in the scene, so that the 

positions of the cubes remain the same when rotation occurs but the puzzle itself 

appears to be moving to the user. 

The next parts of the gravity maze that needed to be incorporated were gravity 

and collisions. Since the camera, not the puzzle itself, was rotating in the scene, 

the direction of gravity needed to change whenever rotation occurred. The blocks 

then needed to stop whenever they collided with either a wall or another block. 

One approach we considered was simply implementing collisions the way we did in 

Assignment 5, with a force being applied to objects when the rendered locations 



collided. While this would make the motion realistic, precision was more 

important for the game so that the blocks didn’t accidently get stuck in positions 

that they shouldn’t get stuck in because of the forces applied to them. We 

decided that the best way to achieve this precision would be to use arrays to track 

collisions, so that a block would stop as soon as it was above another block or a 

wall in the current orientation. The gravity function checks the positions of the 

blocks and walls using the 7x7 arrays, and stops motion as soon as a collision 

occurs. 

The final aspect that needed to be incorporated was animation, so that the blocks 

appeared to be moving smoothly because of gravity, rather than instantly move 

from one position to another. In order to accomplish this, we created functions to 

update the positions of the blocks as they moved from one array position to the 

next. These functions would check if the current position matched the position the 

block should be in, and move the block down by a set increment if they had not 

yet reached their final position. By re-rendering for each of these iterations of the 

scene during motion, the scene became animated with the blocks moving smoothly 

from one position to the next. 

As an extra functionality, we decided to also come up with a way to generate 

random gravity puzzles which were always solvable by some set of moves. In order 

to do this without creating unsolvable puzzles, we first created a maze with walls 

in random positions, and randomly chose initial positions for the three blocks in 

the puzzle. The puzzle then performed a set number of random moves, and 

recorded the final positions of the blocks after the moves and used them as the 

goal positions for the puzzle. Finally, the blocks were returned to their initial 

positions, and the puzzle was rendered for solving. This ensured that there was 

some sequence of moves that would allow the blocks to end up in the goal 

positions. 

Pitcher Pour 

 

Description 

In the game, there are three pitchers of varying capacities; the first can hold 10 

quarts, the second 7 quarts, and the last 3 quarts. At the start, the 10-quart 

pitcher is filled completely with milk. The user can pour the milk between the 



pitchers but cannot choose how much is poured; milk is transferred until one 

pitcher is full or the other is empty. The goal of the game is to distribute the milk 

such that there are 5-quarts of milk in the 10-quart pitcher and the 7-quart 

pitcher.  

Implementation 

The pitchers and the milk are both implemented as cylinder objects to properly 

convey their intended glass-like shape. Each milk object is positioned at the same 

location in the Three.js scene as its corresponding pitcher. To ensure that the milk 

is visible through the pitcher, we modified the material of the pitcher so that it 

was transparent and had a partial opacity.  

In creating the pitcher and milk objects, one of our goals was to ensure that their 

placement in the scene was responsive. To enhance the overall atmosphere of the 

puzzle, we had set the background of the page to be an image of a kitchen with a 

wooden table. Initially, the positions of the pitcher and milk objects had been 

hard-coded to sit on the table when viewed from a full-screen browser. We 

realized that the realism of the scene fell apart when the browser was resized as 

the resizing would often cause the objects to shift off of the table. To account for 

this, we positioned the objects relative to the canvas size of the scene and made 

sure to re-render the scene and change the parameters of the camera when the 

browser is resized.  

Once the pitchers and milk were created and placed properly in the scene, the 

next step was to implement the pouring functionality. To do so, we created a 

function that would trigger upon a click from the user. It takes the mouse click 

and converts its coordinates from screen coordinates to the coordinates in the 

scene. Then, we used a raycaster to check for any intersections with the scene. If 

a pitcher is intersected, we consider it to be “selected.” Once two pitchers have 

been selected, the milk is poured.  

To animate the process of milk being poured from one pitcher to the other, we 

incrementally removed the previous milk cylinder from the scene and added a new 

milk cylinder of smaller or larger height. The scene is re-rendered between each 

step. 

Interface: Integration & User Experience 

Since we implemented two separate puzzles, it was important to ensure a smooth 

user experience across the ​Enigma​ site and game experience. We sought to achieve 

this through several design decisions. 



Landing page 

 
A clean landing page provides an approachable introduction to the game and 

establishes the initial theme. Our ​Enigma​ logo is placed on a spinning cube to add 

dynamism to the page and to serve as an engaging focal point. This was 

implemented in Three.js by applying our logo as a texture to all sides of a 3D 

cube. The cube’s x and y rotation values are then gradually incremented just prior 

to each call to render. 

Puzzle select page 

 
Including a puzzle select page is necessary to allow users to choose and switch 

between puzzles. The preview images provide information at-a-glance. Users will 

naturally express interest by mousing over the appropriate images, and at this 

point we fade-in more detailed information to facilitate decision-making and level 

difficulty selection. 

Consistent header 

 
We realized that similar header functionality is needed across all puzzles: 

navigation back to puzzle selection, resetting puzzles, and revisiting game 



instructions. A consistent header across all puzzle pages serves as a subtle but 

effective way to thread all of the puzzles together. 

Aesthetics 

Maintaining similar 2.5D graphical style was important. The landing page 

intentionally mixes a spinning 3D cube with an 2D button to enter level select. The 

gravity mazes allow some form of 3D-ness to be observed in the blocks that move 

around, but fixing the camera to only view from one side somewhat reduces this to 

a 2D view. The pitcher pour game also adheres to this 2.5D style, setting the 3D 

glass cylinders against a 2D-style backdrop. Other design decisions were made to 

work toward our goal for a more modernized overall aesthetic: serif font, simple 

green/blue/grey color palette, and non-shaded buttons. 

Results 

In the latter stages of implementation, we shared our project with friends to receive 

user feedback we could use to iterate on and polish our project. 

One observation we made regarding the gravity maze was that users naturally 

gravitated towards using the arrow keys on the keyboard rather than using the 

clickable buttons on the screen. We then went back and implemented key press 

controls to accommodate this natural user inclination. 

Additionally, we realized that users should be able to re-access the instructions for 

each puzzle, particularly for the pitcher puzzle, where the instructions can be slightly 

more complex. We added a simple icon button for this in the header bar. We also 

added a button to allow user resets, reducing gameplay frustration and thereby 

retaining engagement. These changes, alongside smaller iterations, allowed us to 

create a polished project that we hope provides an intuitive and satisfying user 

experience. 

Our final project has a wide array of functionalities. We have varying levels of 

difficulty for our gravity maze, including one option that generates a randomized 

maze. Our pitcher pour puzzle successfully animates level changes in the liquids and 

responds effectively to user interaction. Overall, ​Enigma​ is designed with user 

experience in mind. 

Conclusion 

Overall, we were very pleased with the puzzles we created. We were able to 

incorporate many different techniques that we learned throughout the semester such 

as rendering, collisions, ray tracing, and coordinate transformations.  


