

TigerConnect
 Product Guide

Tajreen Ahmed • Jessica Edouard • Kevin Finch • Lillian Meng

Special Thanks to
Professor Brian Kernighan

Jérémie Lumbroso (TA Advisor)

User Guide

Getting Started
TigerConnect is a web application which can be reached at tigerconnect.herokuapp.com. The
site requires the user to login through Princeton University’s CAS system. Click on the login
button to login and then proceed to the app.

Viewing Your Dashboard
Once you login, you will see the dashboard page, with some onboarding instructions giving a
quick overview of TigerConnect features.

If you’re a returning user who has already created and/or joined groups, your dashboard will
give you easy access to those groups instead.

Finding Your Courses
Begin by searching for courses that you want to find problem set (p-set) groups for. The bar on
the left will display search results for courses in the current semester. You may find it helpful to
pin the courses you’re enrolled in for easy access later. Select a course in the left-hand bar to
see any p-set groups that may already exist for that course.

Problem Set Groups

Joining Existing Groups
Once you’ve selected a course on the left-hand bar, any existing groups created for that course
will show up in the main panel. Browse through and Join any groups that look good to you.
Once you’ve joined the group, you can enter the group chat (more on this in a moment).

Creating New Groups
If you don’t see a group that fits your needs, create your own! The Create Group button at the
top right opens a form. Give your group an informative title and description to help others find
your group. The location, time, and description fields are optional, so if you’re not quite sure yet,
feel free to leave them blank. Once your group has been created, you’ll be able to chat with any
other students who join your group and figure out more detailed meeting logistics from there.

Shareable links
Once you’ve found a great group (or just created your own), share it! Each group has a unique
shareable link. Click on the icon to get a copyable link to share. When someone logs in and
visits the link, they will be directed immediately to that specific group, where they can join and
see the chat.

Live Group Chat
Once you’re a member of a group, you’ll be able to click Chat to see a live group chat with all
the members in that same group. There may be students in the group that you haven’t met
before — just click their netid in the left bar under People to see their TigerBook profile. Use the
group chat to flexibly figure out group meeting details that work best for everyone.

Leaving & Deleting Groups
Hopefully your group met and you guys finished that p-set — nice! If you’d like to keep meeting
with that group, all your information is still saved in the group, so just navigate back to your
dashboard to see previous chat messages and group details.

If this was a one-time group, feel free to Leave the group. This will remove it from your
dashboard. If you are the creator of a group, instead of leaving, you are able to Delete that
group entirely. Be mindful of deleting groups that other group members may still want.
Otherwise, leave the group as-is, and it will remain until all groups are cleared at the end of
each semester.

•••

You’re all good to go with TigerConnect. Good luck with those p-sets!

Developer Guide

Getting Setup
In order to set the project up for local development and testing, clone the GitHub repository at
https://github.com/KevinMFinch/TigerConnect. When you clone the repository, run npm
install and npm start. You will now have a local version of the project running, which can be
accessed at localhost:5000.

Backend Stack (./server/db/mongoose.js, ./server/index.js)

The backend uses a node.js server and a MongoDB database. On top of these base
technologies we use Express.js and Mongoose. Express is a popular routing library for node
and Mongoose is an object-relational mapper which enforces rigid documents and provides
validation upon insertion into the database and querying. For the real time chat portion of the
application, we use an npm library socket.io which provides a simple, event driven socket
programming library. This allows real time, two way communication between the server and the
client. We also use a powerful utility library called Lodash to combine database query results
without duplication.

Models (./server/models/)
Using Mongoose, we defined four models which exist in the Mongo database as collections. The four
models we defined are

1. Course. This model contains relevant information for the courses. The course information is
scraped from Princeton’s webfeed for course offerings for the current term. Contains course title,
department code, course number, and any cross listings.

2. CourseEvent. The name is a relic from when we originally planned to expand to have groups for
other things like recreation. Contains title, description, location, time, and creator of the group, the
id of the course that the group is for, as well as the current number of members in the group and
their netids.

3. User. Contains netid, a list of their pinned courses, and whether or not the pinned courses
section should auto-expand when their dashboard loads (marked as being kept open if the user
opens the section, and marked as kept close if the user closes it). This helps us provide
convenience for the user.

4. ChatRoom. This model contains an array of message objects (comprised of the message text,
netid of the sender and the time it was sent) as well as the ID of the room. The room ID is the
Mongo defined _id of the group that the chat room is for.

Scraper (./server/scraper/scraper.js)
We created our own custom scraper in node for scraping the Princeton web feed for course offerings. It
pulls the relevant information from the web feed and populates our Course collection. The scraper relies
on the fs and http standard libraries in node.

Routing (./server/index.js, ./server/routes)
We use Express to handle routing. This allows us to both serve pages (like /main and /chat) and provide
a RESTful API to the front end of the app. The API can be accessed through several endpoints. We have
several “base” API paths, and each of those base paths have their own endpoints for doing certain things
relating to the base path. The base paths are /api/courses/, /api/courseEvents/, /api/auth/, /api/users/,
and /api/chatRoom/. To see what endpoints are available for each base path as well as what data needs
to be passed to each, check the corresponding file in the /server/routes/ directory of the project.

Front End Systems (./server/public/)

jQuery
jQuery provides a convenient and easy way to manipulate the DOM. Since we make large use of the
RESTful API, we needed some way to dynamically manipulate the DOM based on the queries. We use
jQuery and vanilla JavaScript to do this.

Bootstrap
Bootstrap is a super simple CSS library. It provides a grid based system, breaking the screen into 12
columns. This makes organizing page content extremely easy and allowed us to focus more time on
developing the app and polishing it rather than fiddling with styles for page layout for a long time.

Moment.js
One important feature we wanted to add was to have messages that would display how long ago a group
was created. The JavaScript date object is pretty clunky and does not have a very powerful set of
features. In order to address this issue, we used a library called moment which simplifies working with
dates immensely. It allows easy formatting of dates as well as a “time from now” feature, which is exactly
what we were looking for.

Client/Server Communication (/public/chat.js, ./server/index.js)

Fetch
We made heavy use of the Fetch API, which is a built in JavaScript feature set which allows for fetching
resources across the network. We used this to make our HTTP GET, POST, and DELETE calls which
were received by the database through our RESTful API.

Socket.io
As mentioned above, we needed a way to have two way communication between the client and the
server. We used socket.io, a socket programming library for Node, in order to do this. Socket has an npm
module which is installed on the server, as well as a client side library. The client side library is then used
to setup a connection to the server and they are controlled through emitting and receiving events.

